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bstract

e have performed a statistical evaluation of 5100 experimental values of the bend strength of test pieces from a serial production of alumina

roducts. The Weibull distribution was compared to three other, commonly known, 2-parametric distributions in order to reveal which of them best
atches the experiments. The maximum-likelihood method was used to evaluate the corresponding parameters, and then a Q–Q  plot was used for

ll the statistics. We confirmed that the Weibull distribution describes the experimental strengths most accurately.
 2011 Elsevier Ltd. All rights reserved.
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.  Introduction

The scatter in the values of strength measured in typical
echanical tests for brittle materials, such as ceramics, is usu-

lly described by the Weibull statistical distribution, either two-
r three-parametric, or the one corresponding to more fracture
odes.1–6 The reliability of the Weibull distribution has been

heoretically and experimentally investigated for a very broad
ange of conditions.7–23 One of the typical experimental prob-
ems is that the cost limits the number of testing pieces for the
trength measurements, which makes the prediction of the free
arameters in the chosen distribution less reliable.

Different calculation procedures are used to evaluate the
eibull parameters (or the corresponding parameters in other

tatistical distributions), the most popular being the linear-
egression (LR) method and the maximum-likelihood (ML)

7,8
ethod. Each of these methods has its benefits and drawbacks.
onte–Carlo simulations are a very useful tool for predicting

he reliability of various estimation methods and their optimiza-
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ion, particularly when they are combined with experiments.
hese simulations indicate that all of the estimation methods,
uch as LR and ML, show some biasing in the estimated param-
ters, depending on the size of the test group and the adaptation
nd optimization of the particular method. The maximum-
ikelihood method is a standard method due to its efficiency
nd its ease of application when censored failure populations
re encountered.24 Since this method has proved to be par-
icularly suitable, several variants of it have been proposed
nd tested, for instance, the generalized maximum-likelihood
ethod (GMLE), which uses various rank estimators.25–27 In

ddition, some authors tested the idea of dividing several mea-
ured strength values of ceramic materials into random, smaller
ubsets in order to study the corresponding statistical distribution
f the Weibull parameters.4,5,8–10

However, the justification for the use of the Weibull distri-
ution has been addressed by many authors and several other
istributions have been proposed, including the normal (Gaus-
ian), log-normal and Gamma distributions.2,28–31 The Weibull
istribution cannot be favored with certainty as compared, for
nstance, with the Gaussian distribution, when a limited number
f samples are subjected to the strength test.29 The distribution

ay be changed, for instance, in non-homogeneous materials,

uch as composites and porous ceramics, due to the different
echanisms, e.g., residual stresses.

http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2011.12.010
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When the amount of available experimental strength data is
odest, it is usually impossible to state with certainty that the
eibull distribution is correct, and not, for instance, the Gaus-

ian. Different methods offer some reliability factors, which
nable a quantitative comparison of the successfulness when
sing different distributions for the same set of experimental
ata. An example is the correlation coefficient in the linear
egression method, which measures the deviations of the data
oints from a straight line in the appropriate linearized depen-
ence of the probability on the strength.

In statistics, P−P  plots (P  standing for the cumulative proba-
ility) or Q−Q  plots (Q  standing for the quantile) are often used
o obtain a visual impression of how well the known theoretical
istribution fits the experimental data.32,33 A good match of plot
oints to the 45◦ line indicates a good agreement between the
xperiment and the theory for both types of plots (the physical
nits on both axes correspond to the probabilities in the case of
he P–P  plots, or the measured quantity in the case of the Q–Q
lots).

In our previous paper we analyzed a large quantity of
onte–Carlo data and estimated the Weibull parameters using

he ML method.34 We combined theoretical results with the
esults of our measurements of the four-point bend strength of
6% alumina samples from a serial production (1000 strength
alues). We focused mostly on the problem of the reliability of
he estimation of the Weibull modulus for a small number of
amples. In particular, we confirmed the log-normal distribution
f the estimated values of the Weibull modulus when a large set
f data is randomly divided into small subsets.

In this work we make a statistical evaluation of 5100 exper-
mental values of the bend strength of test pieces from a serial
roduction of alumina products. We use the ML method for an
stimation of the statistical parameters together with a Q–Q-plot
o show that the Weibull distribution best fits the experimental
ata.

. Experimental

Ceramic samples were fabricated using the low-pressure
njection-molding technique in the company Hidria AET d.o.o.
or quality-control purposes. The strengths of 5100 sam-
les in the shape of a rectangular bar with dimensions of

 mm ×  3 mm ×  45 mm, collected from 425 batches, were used
n the study (there were 12 broken test pieces in each batch). The
aterial was high alumina ceramic with a density of 0.95 of the

heoretical value. The ceramic was prepared by sintering for 3 h
t 1640 ◦C. The feedstock for injection molding was made from

 powder containing 96% alumina (d10 = 0.7 �m, d50 = 1.9 �m,
10 = 4.2 �m) and 4% silica-based material (d10 = 0.7 �m,
50 = 4.8 �m, d90 = 9.5 �m), which served as a liquid-phase sin-
ering aid. The numbers in brackets correspond to the particle
iameters, where the cumulative size distribution reaches values

f 10%, 50% and 90%, respectively. The material is primarily
sed for electrical insulating purposes and not high-strength-
emanding tasks and is labeled as a “middle-strength” alumina
eramic in the company.
an Ceramic Society 32 (2012) 1221–1227

The strength was calculated from the breaking force in a
-point bending test35 using the equation:

 = 3F (LS −  LL)

2ah2 (1)

here σ  is the bending strength, F  is the breaking force,
S = 40 mm is the outer support span, LL = 20 mm is the load
pan, a  = 4 mm is the specimen width, and h = 3 mm is the spec-
men thickness.

. Statistical  model  and  graphical  representation

Our statistical variable is the four-point bend strength (called
trength for brevity), denoted by the symbol σ. In our calcu-
ations we deal with both probability distribution functions: the
robability density function p(σ), and the cumulative probability
unction, also called the unreliability function, which is defined
s: P(σ) = ∫ σ

0 p(x) dx. We test the statistical compatibility
f the experimental data with the four different 2-parametric
istribution functions: (1) Weibull, (2) normal (Gaussian), (3)
og-normal, and (4) Gamma. The exact mathematical formulae
re described in Section 3.2.

.1. The  procedure  to  estimate  the  goodness  of  fit

The goodness of fit for a specific distribution was estimated
rom probability plots, where the experimental data is plotted
gainst values calculated with a theoretical distribution. This is

 graphical technique for assessing how well a certain distri-
ution can describe experimental data. The graphical method,
here all the experimental data are plotted, gives an important
ualitative estimation about how well a particular distribution
escribes the data. The visualization of all the strength data in
he evaluation of the distribution reliability is more illustrative
nd trustworthy than merely giving a number that indicates the
evel of correspondence of the theoretical distribution to the real
xperimental data.

The detailed procedure for constructing probability plots for
ach considered statistical distribution consists of the following
teps:

a) The best fitting parameters are determined for each distribu-
tion by using the maximum-likelihood method. This is done
in the following way. The (N  = 5100) measured strength val-
ues, σi, i = 1 to N, are inserted into the probability density
function p(a,b; σ), where a  and b  stand for the corresponding
free parameters of the distribution, e.g., a ≡  m  and b  ≡  σ0 for
the Weibull distribution, etc. The ML procedure maximizes
the following function with respect to the free parameters a
and b:

Y =  ln

(
N∏

i=1

p(a,  b; σi)

)
=

N∑
i=1

ln p(a,  b; σi) (2)
by setting to zero the derivatives of Y  with respect to a  and
b. The detailed procedure is different for each distribution.
The equations that were used to calculate each parameter for
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a particular distribution are described in the Mathematical
appendix.

b) The experimental bending-strength values σi are ranked in
an ascending order, where i is the consecutive number of
the sample in the ordered set. A probability of failure (Pi) is
assigned to each value, according to a standard estimator24:

Pi = i −  0.5

N
(3)

where Pi is the cumulative probability of failure, and N  is
the total number of samples (5100 in our case). Other esti-
mators (see comments in Section 3) were also checked; it
was revealed that the choice of estimator function has no
effect on the results, so that the use of Eq. (3) is justified.

c) For each Pi a corresponding theoretically expected strength
σi,th is calculated from the inverse cumulative distribution,
using the parameters determined with the maximum-
likelihood method. This was done either analytically or
numerically by inverting the corresponding equations for
the cumulative distribution functions in Section 3.2.

d) We use the graphical representation of the theoretical vs.
experimental distribution in a manner similar to the con-
struction of the Q–Q  probability plots. On our “Q–Q” plots
the i,th experimental value of the strength σi corresponds
to the coordinate on the vertical axis and the theoretically
expected strength σi,th corresponds to the coordinate on the
horizontal axis. If the experimental data are in excellent
agreement with the proposed theoretical distribution, then
all the points on the graph lie very near the straight line with
an inclination of 45◦ (y  = x  line, for briefness).

e) A correlation coefficient or R2 factor is calculated to deter-
mine how close to the y  = x  line on average the plot points
lie:

R2 =  1 −
∑N

i=1(σi −  σi,th)2∑N
i=1(σi −  〈σi〉)2

(4)

where 〈σi〉 is the mean value of the experimental strengths.

.2. Distributions

One of the two parameters (the second one) for all the four
istributions will be denoted similarly: σ0W, σ0N, σ0LN or σ0G
see below) to stress the similarity of its meaning. In all cases
t has the dimension of strength and is directly proportional to
he mean strength of the corresponding strength distribution. It
an be called the scale parameter. In all the distributions below,
he strengths are theoretically limited to non-negative values;
nly the normal distribution is formally widened to negative
trengths (this has no practical consequence since physically
enseless negative strengths are extremely improbable).

In order to be brief, we give this section only the probability
unctions for the four distributions, while in the Mathematical
ppendix the reader can find the corresponding formulae for the

stimation of the parameters with the ML method, as well as
ome resulting statistical parameters (the mean value, standard
nd cubic deviations, see below).

4

e
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(a) Weibull distribution
In the case of the 2-parameter Weibull statistics, the func-

tions p(σ) and P(σ) are equal to:

p(σ) = m

σ0W

(
σ

σ0W

)m−1

·  exp

(
−
(

σ

σ0W

)m)
(5a)

P(σ) =  1 −  exp

(
−
(

σ

σ0W

)m)
, (5b)

with the Weibull modulus m  and the scale parameter σ0W.
b) Normal distribution

The p  and P  functions for the normal distribution are:

p(σ) = 1

δ  · √
2π

·  exp

(
−1

2

(
σ  −  σ0N

δ

)2
)

,  (6a)

P(σ) = 1

2

(
1 +  erf

(
σ −  σ0N

δ

))
, (6b)

where the parameters have the simple and direct meaning:
σ0N is the mean strength, and δ  is the standard deviation. The
tabulated error function erf(x) = √

2/π
∫ x

0 exp(−t2/2)dt  is
used for the cumulative probability function.

(c) Log-normal distribution
A log-normal distribution means that the logarithms of

the strengths are distributed normally. The corresponding p
and P functions are:

p(σ) = 1

σ
· 1

w  · √
2π

·  exp

(
−1

2

(
ln σ  −  ln σ0LN

w

)2
)

,

(7a)

P(σ) = 1

2

(
1 +  erf

(
ln σ  −  ln σ0LN

w

))
, (7b)

Note the additional factor 1/σ  in expression (7a) for p(σ),
as compared to p(σ) for the normal distribution in Eq. (6a).
Here, the parameter w is dimensionless, while the second
parameter, σ0LN, is written with logarithms so that the phys-
ical units match.

d) Gamma distribution
In the case of the Gamma distribution, the functions p(σ)

and P(σ) are equal to:

p(σ) = 1

σk
0G ·  Γ  (k)

·  σk−1 · exp

(
− σ

σ0G

)
(8a)

P(σ) = 1

Γ  (k)
·
∫ σ/σ0G

0
tk−1 · exp(−t)dt,  (8b)

with the dimensionless parameter k  and the scale parameter
σ0G. Note that P  has no analytical form and must be tabu-
lated. Here, Γ  (k) = ∫∞

0 tk−1e−tdt  is the gamma function.
. Results  and  discussion

All the strength measurements are presented in Fig. 1, where
ach value is plotted in chronological order. The experimental
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Fig. 1. All 5100 bending strength values with the mean value of 289.557 MPa
(unsorted strength data); the numbers on the horizontal axis correspond to ordinal
numbers of the data.

Table 1
ML parameters and the R2 factor for the four distributions.

Distribution 1st parameter 2nd parameter R2

Weibull m = 9.048 σ0W = 305.54 MPa 0.9984
Normal δ = 37.486 MPa σ0N = 289.557 MPa 0.9855
L
G

m
a

t
c
p
i
p

Fig. 3. Probability plot for the normal distribution.
og-normal w = 0.1372 σ0LN = 286.86 MPa 0.9468
amma k = 55.599 σ0G = 5.208 MPa 0.9645

ean value of the strengths calculated from the arithmetic aver-
ge of the 5100 strength values is 〈σ〉  = 289.557 MPa.

Table 1 gives the ML-estimated parameters for all four
heoretical distributions, together with the R2 factor, and the
orresponding probability plots for the different distributions are

resented in Figs. 2–5. The first parameter (the shape parameter)
s dimensionless, except for the normal distribution. The second
arameter (the scale parameter) has the dimensions of strength.

Fig. 2. Probability plot for the Weibull distribution.

Fig. 4. Probability plot for the log-normal distribution.

Fig. 5. Probability plot for the gamma distribution.
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Fig. 6. Dependence of the R2 factor on the shape parameter if the theoretical
mean strength is kept equal to the experimental average. The shape parameters
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Table 2
Experimental and calculated statistical parameters for the four distributions.

〈σ〉 δσ δ3σ

Experiment 289.56 37.49 −29.58
Weibull 289.41 289.41 38.26 38.26 −32.15 −32.12
Normal 289.56 289.56 37.49 37.48 0 1.19
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Acknowledgments
re m, δ, w and k, respectively, for the four distributions. The shape parameter
s normalized with respect to the value obtained with the ML method.

From a visual inspection the data points fit best to a straight
ine in the case of the Weibull distribution, and this is confirmed
y the highest R2 factor. The normal distribution is not signif-
cantly worse than the Weibull distribution, but the remaining
wo distributions are definitely less successful in describing the
trength data. The plot points in all the graphs are much denser
n the middle than for the small and large strength values, which
s already evident in Fig. 1.

The influence of choosing different rank estimators was veri-
ed by taking some other commonly used expressions7,13,17,11,36

nstead of Eq. (3), for instance:

i = i −  0.3

N  +  0.4
(9)

he R2 factors varied very little. The largest discrepancy
ppeared in the log-normal distribution, where the difference
etween the R2 factors was only 0.06%.

However, we must be aware that the parameters optimized
sing the maximum-likelihood method do not necessarily yield
he highest possible R2 factor for the given distribution. In order
o clarify this question, we optimized the R2 factor for each dis-
ribution by varying the first (shape) parameter in Table 1 around
he value obtained using the ML method. The second parameter
as adjusted to the first to keep the theoretical mean strength
alue (see Mathematical appendix) the same as for the exper-
mental average strength (the second parameter in the normal
istribution was kept constant, of course, since it coincides with
he average strength). The dependence of R2 on the shape param-
ter was plotted in Fig. 6; this parameter was scaled relative to
ts ML value (see the vertical line in the figure). The maximum
f R2 corresponds exactly to the ML value of the scale param-
ter only for the normal distribution; this could be expected

ince the ML procedure seems to work optimally for this dis-
ribution. In the case of the Weibull distribution the maximum
s only slightly shifted with respect to the value with the ML S
og-normal 289.57 289.56 39.92 39.91 29.80 29.75
amma 289.56 289.56 38.83 38.83 25.04 25.01

arameters; the discrepancy for the Gamma and log-normal dis-
ributions is somewhat larger. Nevertheless, it is evident, first that
he ML method gives an almost optimal R2 factor for all distri-
utions, and second, that the Weibull distribution truly describes
he experimental data best.

Finally, we make a comparison for the four distributions to see
ow well the theoretical mean strength 〈σ〉, its standard deviation
σ and the cubic deviation δ3σ  fit to the experimental values.
he cubic deviation can be defined in a similar manner as the
tandard deviation:

3σ  = 3
√

〈(σ  −  〈σ〉)3〉  (10)

he brackets 〈. .  .〉 denote statistical averaging. The usefulness
f this deviation is that it reveals the asymmetry of the distribu-
ion around its maximum. The results are shown in Table 2. In
he first row there are the experimental values of these statistical
arameters, followed by the theoretically obtained values for the
our distributions. The values for each of the three parameters
re presented in two columns: in the left column there is a value
irectly calculated from the ML parameters (see Mathematical
ppendix), while in the right column the parameters are obtained
rom the simulated “theoretical” strengths in the probability
lots, using the corresponding statistical averaging.

While the mean value and the standard deviation of the cal-
ulated strength for all the distributions agree reasonably well
ith the experimental values (the exact agreement holds for the
ormal distribution), only the Weibull distribution gives a nearly
orrect result for the cubic deviation.

. Conclusion

The comparison of four different theoretical statistical
istributions with 5100 experimental strengths for liquid-phase-
intered alumina revealed that the Weibull distribution most
ccurately describes the strength scatter. The R2 factor obtained
y using the parameters from the maximum-likelihood method
nd by comparing theoretically simulated strengths with exper-
mental values was the highest for the Weibull distribution:
2 = 99.84%. In addition, the mean cubic deviation of the
trength values from the mean strengths in the experimental data
s not negligible (it is comparable to the standard deviation) and
s correctly estimated only for the Weibull distribution.
This research was supported by the Ministry of Education and
port of Republic of Slovenia and the European Social Fund. We
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hank the company Hidria AET for providing the experimental
ata.

We would gladly provide the full set of the experimental
ata in the digital form to the interested reader (contact the
orresponding author).

ppendix  A.  Mathematical  appendix

(a) Weibull distribution
When the derivatives of Y  in Eq. (1) for the ML method

with respect to m  and σ0 are set to zero, the following pair
of equations is obtained:

1

m
=
∑N

i=1ln σi ·  σi
m∑N

i=1σ
m
i

− 1

N

N∑
i=1

ln σi

σ0W =
(∑N

i=1σ
m
i

N

)1/m

In practice, the first equation is first numerically solved for
m and then σ0W is calculated from the second equation.

The theoretical mean value of the strength 〈σ〉, its stan-
dard deviation δσ  and cubic deviation δ3σ  are equal to:

〈σ〉 =  σ0W ·  Γ

(
1 + 1

m

)

δσ =  σ0W ·
√

Γ

(
1 + 2

m

)
−  Γ 2

(
1 + 1

m

)

δ3σ = σ0W

· 3

√
Γ

(
1 + 3

m

)
+ 2Γ 3

(
1 + 1

m

)
− 3Γ

(
1 + 1

m

)
Γ

(
1 + 2

m

)

where Γ  = ∫∞
0 tx−1e−tdt  is the gamma function.

b) Normal distribution
The ML method gives the same equations for the mean

value and standard deviation of the strengths as is normally
used in a statistical evaluation of the data without reference
to the exact form of the distribution function:

σ0N =  〈σ〉  ≡ 1

N

N∑
i=1

σi
δ  =  δσ  ≡
√√√√ 1

N

N∑
i=1

(σi −  σ0N )2
an Ceramic Society 32 (2012) 1221–1227

while the cubic deviation is zero because of the symmetry
of the Gaussian function.

(c) Log-normal distribution
The corresponding ML parameters are obtained in a sim-

ilar manner as for the normal distribution:

ln σ0LN = 1

N

N∑
i=1

ln σi

w  =
√√√√ 1

N

N∑
i=1

(ln σi −  ln σ0LN)2

The theoretical mean strength, standard and cubic deviations
are:

〈σ〉 =  σ0LN exp

(
w2

2

)

δσ  =  σ0LN exp

(
w2

2

)
·
√

exp(w2) −  1

δ3σ  =  σ0LN exp

(
w2

2

)
· 3
√

exp(3w2) −  3 exp(w2) +  2

d) Gamma distribution
The ML equations for the parameters are:

dΓ (k)/dk

Γ  (k)
−  ln k = 1

N

N∑
i=1

ln σi −  ln

(
1

N

N∑
i=1

σi

)

≡ 〈ln σ〉  −  ln〈σ〉

σ0G =
∑N

i=1σi

Nk
≡ 〈σ〉

k

In practice, the first equation is first numerically solved for k
and then σ0G is calculated from the simple second equation.
This strategy is comparable to that of solving the similar ML
problem for the Weibull distribution.

The theoretical mean strength, standard and cubic devia-
tions are:

〈σ〉 =  kσ0G

δσ  =
√

k  · σ0G
δ3σ  = 3
√

2k  · σ0G
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